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Concerns continue to grow about the prevalence of misinfor-
mation on social media platforms1,2, including during the 
recent coronavirus disease 2019 pandemic3. These types of 

content often exploit people’s tendency to prefer pro-attitudinal 
information4, which can be exacerbated by platform content rec-
ommendations5,6. In this paper, we explore a possible algorithmic 
approach to mitigate the spread of misinformation and promote 
content with higher journalistic standards online.

Social media platform recommendation algorithms frequently 
amplify bias in human consumption decisions. Though the infor-
mation diets of Americans are less slanted in practice than many 
assume, the people who consume the most political news are most 
affected by the tendency towards selective exposure7. As a result, the 
news audience is far more polarized than the public as a whole8,9. 
Although the prevalence of so-called fake news online is rather lim-
ited and concentrated amongst relatively narrow audiences7,10–14, 
content that generally appeals to these tendencies—which does 
include low-quality or false news—may generate high levels of read-
ership or engagement2, prompting algorithms that seek to maximize 
engagement to distribute them more widely.

Prior research indicates that existing recommendation algo-
rithms tend to promote items that have already achieved popular-
ity15,16. This bias may have several effects on the consumption of 
low-quality and false news. First, sorting the news by (either pre-
dicted or achieved) engagement can exacerbate polarization by 
increasing in-group bias and discouraging consumption amongst 
out-group members17. Second, it may contribute to information 
cascades, amplifying differences in rankings from small variations 
or random fluctuations and degrading the overall quality of infor-
mation consumed by users18–22. Third, exposure to engagement met-
rics makes users more likely to share and less likely to fact-check 
highly engaging content from low-credibility sources, increasing 
vulnerability to misinformation23. Finally, popularity bias in rec-
ommendation systems can create socio-algorithmic vulnerabilities 
to threats such as automated amplifiers, which exploit algorithmic 

content rankings to spread low-quality and inflammatory content to 
like-minded audiences24,25.

Given the speed and scale of social media, assessing directly the 
quality of every piece of content or the behaviour of each user is 
infeasible. Online platforms are instead seeking to include signals 
about news quality in their content recommendation algorithms26,27, 
for example, by extracting information from trusted publishers28 or 
by means of linguistic patterns analysis29,30. More generally, a vast 
literature examines how to assess the credibility of online sources31,32 
and the reputations of individual online users33,34, which could in 
principle bypass the problem of checking each individual piece of 
content. Unfortunately, many of these methods are hard to scale 
to large groups and/or depend upon context-specific information 
about the type of content being generated. For example, methods for 
assessing the credibility of content on Wikipedia often assume that 
content is organized as a wiki. As a result, they are not easily applied 
to news content recommendations on social media platforms.

Another approach is to try to evaluate the quality of articles 
directly35, but scaling such an approach would likely be costly 
and cause lags in the evaluation of novel content. Similarly, while 
crowd-sourced website evaluations have been shown to be gener-
ally reliable in distinguishing between high- and low-quality news 
sources36, the robustness of such signals to manipulation is yet to be 
demonstrated.

Building on the literature about the benefits of diversity at the 
group level37,38, we propose using the partisan diversity of the audi-
ence of a news source as a signal of its quality. This approach has 
two key advantages. First, audience partisan diversity can be com-
puted at scale given that information about the partisanship of 
users is available or can be inferred in a reliable manner. Second, 
because diversity is a property of the audience and not of its level of 
engagement, it is less susceptible to manipulation if one can detect 
inauthentic partisan accounts39–42. These two conditions (inferring 
partisanship reliably and preventing abuse by automated amplifi-
cation/deception) could easily be met by the major social media  
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platforms, which have routine access to a wealth of signals about 
their users and their authenticity.

We evaluate the merits of our proposed approach using data from 
two sources: a comprehensive data set of web traffic history from 
6,890 US residents, collected along with surveys of self-reported 
partisan information from respondents in the YouGov Pulse survey 
panel, and a dataset of 3,765 news source reliability scores compiled 
by trained experts in journalism and provided by NewsGuard43. We 
first establish that domain pageviews are not associated with overall 
news reliability, highlighting the potential problem with algorith-
mic recommendation systems that rely on popularity and related 
metrics of engagement. We next define measures of audience par-
tisan diversity and show that these measures correlate with news 
reliability better than popularity does. Finally, we study the effect of 
incorporating audience partisan diversity into algorithmic ranking 
decisions. When we create a variant of the standard collaborative 
filtering algorithm that explicitly takes audience partisan diversity 
into account, our new algorithm provides more trustworthy rec-
ommendations than the standard approach, with only a small loss 
of relevance, suggesting that reliable sources can be recommended 
without the risk of jeopardizing user experience.

These results demonstrate that diversity in audience partisanship 
can serve as a useful signal of news reliability at the domain level, 
a finding that has important implications for the design of content 
recommendation algorithms used by online platforms. Although 
the news recommendation technologies deployed by platforms 
are more sophisticated than the approach tested here, our results 
highlight a fundamental weakness of algorithmic ranking methods 
that prioritize content that generates engagement and suggest a new 
metric that could help improve the reliability of the recommenda-
tions that are provided to users.

Results
Popularity does not predict news reliability. To motivate our 
study, we first demonstrate that the popular news content that algo-
rithmic recommendations often highlight is not necessarily reliable. 
To do so, we assess the relationship between source popularity and 
news reliability. We measure source popularity using YouGov Pulse 
traffic data. Due to skew in audience size amongst domains, we 
transform these data to a logarithmic scale. In practice, we measure 
the popularity of a source in two ways: as (the log of) the num-
ber of users, and as (the log of) the number of visits, or pageviews. 
News reliability is instead measured using NewsGuard scores 
(Data). Figure 1 shows that the popularity of a news source is at best 
weakly associated with its reliability (see Supplementary Table 2 for 
a full regression summary). At the user level (Fig. 1, left), the over-
all Pearson correlation is r(n = 1,024) = 0.03 (two-sided P = 0.36, 
95% confidence interval (CI) −0.01 to 0.09). At the pageview level  
(Fig. 1, right), r(n = 1,024) = 0.05 (two-sided P = 0.12, 95% CI −0.01 
to 0.11). Bootstrapped equivalence tests at the 0.05 significance level 
indicate that we can reject Pearson correlation coefficients larger 
than 0.096 at the visitor level and 0.094 at the pageview level.

The association between the two variables remains weak even 
if we divide sources based on their partisanship. When measur-
ing popularity at the user level, websites that have a predomi-
nantly Democratic audience have a significant positive association 
(r(n = 783) = 0.09, two-sided P = 0.02, 95% CI 0.02 to 0.16), but for 
websites with a Republican audience, the correlation is negative 
and not significant at conventional standards (r(n = 237) = −0.12, 
two-sided P = 0.06, 95% CI −0.25 to 0.005). A similar pattern holds 
at the pageview level, with a weak, positive and insignificant asso-
ciation for websites with predominantly Democratic audiences 
(r(n = 702) = 0.07, two-sided P = 0.07, 95% CI −0.01 to 0.14) and a 
weak, negative and non-significant association for those with pre-
dominantly Republican audiences (r(n = 322) = −0.01, two-sided 
P = 0.90, 95% CI −0.10 to 0.12). Bootstrapped equivalence tests at the 

0.05 significance level for websites with predominantly Democratic 
audiences reject correlation coefficients larger than 0.127. Similarly, 
for websites with a predominantly Republican audiences, we can 
calculate equivalence bounds of (−0.222, 0) and (−0.078, 0.092) at 
the visitor and pageview level, respectively. Overall, these results 
suggest that the strength of association between the two variables 
is quite weak even after taking into account for the partisan traffic 
of a website.

Audience partisan diversity is signal of reliable news. In contrast, 
we observe that sites with greater audience partisan diversity tend 
to have higher NewsGuard scores while those with lower levels of 
diversity, and correspondingly more homogeneous partisan audi-
ences, tend to have lower reliability scores. As our primary met-
ric of diversity, we selected from a range of alternative definitions 
(Definition of audience partisan diversity section) the variance 
of the partisanship distribution. Figure 2 shows how NewsGuard 
scores vary with both mean audience partisanship and the variance 
in audience partisanship.

As Fig. 2 indicates, unreliable websites with very low NewsGuard 
scores are concentrated in the tails of the distribution, where parti-
sanship is most extreme and audience partisan diversity is, by neces-
sity, very low. This relationship is not symmetrical. Low-reliability 
websites (whose markers are darker shades of blue in the figure) are 
especially concentrated in the right tail, which corresponds to web-
sites with largely Republican audiences. The data in Fig. 2 also sug-
gest that the reliability of a website may be associated not just with 
the variance of the distribution of audience partisanship slants but 
also with its mean. To account for this, we first compute the coef-
ficient of partial correlation between NewsGuard reliability scores 
and the variance of audience partisanship given the mean audi-
ence partisanship of each website. Compared with popularity, we 
find a stronger (and significant) correlation regardless of whether 
mean partisanship and audience partisan diversity are calculated 
by weighting individual audience members equally (user level, left 
panel: partial correlation r(n = 1,024) = 0.38, two-sided P < 10−4, 
95% CI 0.32 to 0.43) or by how often they visited a given site 
(pageview level, right panel: partial correlation r(n = 1,024) = 0.22, 
two-sided P < 10−4, 95% CI 0.16 to 0.28).

Aside from mean partisanship, a related, but potentially distinct, 
confounding factor is the extremity of the partisanship slants distri-
bution (that is, the distance of the average partisanship of a website 
visitor on a 1–7 scale from the midpoint of 4, which represents a 
true independent). We thus computed partial correlation coeffi-
cients again but instead keep the ideological extremity of website 
audiences constant instead of the mean. Our results are consistent 
using this approach (user level: r(n = 1,024) = 0.26, P < 10−4, 95% CI 
0.20 to 0.31; pageview level: r(n = 1,024) = 0.15, P < 10−4, 95% CI 
0.08 to 0.21; both tests are two-sided).

Finally, we test whether bimodal distributions of audience parti-
sanship are associated with quality. This test is important to conduct 
because unimodal and bimodal distributions may have the same 
variance. In Supplementary Information Sect. S6, we define a met-
ric for bipolarity and find that audience bipolarity is a much weaker 
signal of quality than partisan diversity as measured by the variance.

We study the diversity–reliability relationship in more detail in 
Fig. 3, which differentiates between websites with audiences that 
are mostly Republican and those with audiences that are mostly 
Democratic. Consistent with what we report above, Fig. 3 shows 
that audience partisan diversity is positively associated with news 
reliability (see Supplementary Table 3 for a full regression sum-
mary). Again, this relationship holds both when individual audi-
ence members are weighted equally (user level, left panel) and when 
they are weighted by their number of accesses (pageview level, right 
panel). In addition, we find that the relationship is stronger for  
sites whose average visitor identifies as a Republican (standardized 
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ordinary least squares coefficient of Republican domains: β = 10.6 
(0.94) at user level; β = 8.80 (1.05) at pageview level) versus those 
whose average visitor identifies as a Democrat (standardized ordi-
nary least squares coefficient of Democrat domains: β = 2.93 (0.66) 
at user level; β = 0.82 (0.86) at pageview level), which is consis-
tent with Fig. 2 (the partisan slope difference is 7.71 at user level, 
P < 10−4, 95% CI 5.46 to 9.97; 7.97 at pageview level, P < 10−4, 95% 
CI 5.32 to 10.62).

These results are not affected by popularity. Partisan diver-
sity is weakly correlated with popularity, regardless of the opera-
tional definition of either measure (Supplementary Table 4). In 
fact, the association between diversity and NewsGuard reliability 
scores is consistent even when controlling for popularity (user 
level: r(n = 1,024) = 0.34, two-sided P < 10−4, 95% CI 0.29 to 0.40; 
pageview level: r(n = 1,024) = 0.17, two-sided P < 10−4, 95% CI 0.11 
to 0.23), suggesting that diversity could contribute to detecting 
quality over and above the more typical popularity metrics used by 
social media algorithms. However, the previous analysis of Fig. 3 
shows that the overall relationship masks significant heterogeneity  

between websites with mostly Republican or Democratic audiences. 
To tease apart the contributions of popularity from those of par-
tisanship, we estimate a full multivariate regression model. After 
controlling for both popularity and political orientation, we find 
qualitatively similar results. Full regression summaries can be found 
in Supplementary Tables 2 and 3.

As mentioned above, variance in audience partisanship is not the 
only possible way to define audience partisan diversity. Alternative 
definitions (for example, entropy) can be used (Definition of audi-
ence partisan diversity section). As a robustness check, we there-
fore consider a range of alternative definitions of audience partisan 
diversity and obtain results that are qualitatively similar to the 
ones presented here, though results are strongest for variance 
(Supplementary Table 1).

Audience diversity produces trustworthy relevant rankings. To 
understand the potential effects of incorporating audience parti-
san diversity into algorithmic recommendations, we next consider 
how recommendations from a standard user-based collaborative 
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filtering (CF) algorithm44,45 change if we include audience partisan 
diversity as an additional signal. We call this modified version of the 
algorithm collaborative filtering + diversity (CF+D) (see Audience 
diversity and collaborative filtering section for a formal definition).

In classic CF, users are presented with recommendations drawn 
from a set of items (in this case, web domains) that have been 
‘rated’ highly by those other users whose tastes are most similar to 
theirs. Lacking explicit data about how a user would ‘rate’ a given 
web domain, we use a quantity derived from the number of user 
pageviews to a domain (based on term frequency-inverse document 
frequency (TF-IDF); see also Audience diversity and collaborative 
filtering section) as the rating.

To evaluate our method, we follow a standard supervised learn-
ing workflow. We first divide web traffic data for each user in 
the YouGov Pulse panel into training and testing sets by domain 
(Supervised learning evaluation workflow section). We then com-
pute similarities in traffic patterns between users for all domains 
in the training set (not just news websites) and use the computed 
similarities to predict the aforementioned domain-level pageviews 
metric on the test set. The domains that receive the highest pre-
dicted ratings (that is, expected TF-IDF-transformed pageviews) 
are then selected as recommendations. As a robustness check, we 
obtain consistent results if we split the data longitudinally instead 
of randomly (that is, as a forecasting exercise; see Supplementary  
Figs. 7 and 8 for details).

Note that, if a user has not visited a domain, then the number 
of visits for that domain will be zero. In general, due to the long 
tail in user interests15, we cannot infer that the user has a negative 
preference towards a website just because they have not visited it. 
The user may simply be unaware of the site. We therefore follow 
standard practice in the machine learning literature in only evaluat-
ing recommendations for content for which we have ratings (that is, 
visits in the test set), though in practice actual newsfeed algorithms 
rank items from a broader set of inputs, which typically includes 
content that the user may not have seen (for example, content  
shared by friends5).

To produce recommendations for a given user, we consider all 
the domains visited by the user in the test set for which ratings 
are available from one or more respondents in a neighbourhood 
of most similar users (domains with no neighbourhood rating are 
discarded since neither CF nor CF+D can make a prediction for 
them; Audience diversity and collaborative filtering section) and 
for which we have a NewsGuard score (that is, a reliability score). 
We then rank those domains by their rating computed using either 

CF or CF+D. This process produces a ranked list of news domains 
and reliability scores from both the standard CF algorithm and the 
CF+D algorithm, which has been modified to incorporate the audi-
ence partisan diversity signal. We evaluate these lists using two dif-
ferent measures of trustworthiness which are computed for the top k 
domains in each list: the mean score (a number in the 0–100 range) 
and the proportion of domains with a score of 60 or higher, which 
NewsGuard classifies as indicating that a site ‘generally adheres to 
basic standards of credibility and transparency’43 (Trustworthiness 
metrics section).

By varying the number of top domains k, we can evaluate how 
trustworthiness changes as the length of the list of recommendations 
increases. In Fig. 4, we plot the trustworthiness of the recommended 
domains as a function of k. We restrict values of k to 1–28, the values 
for which there are at least 100 users in each bin (see Supplementary 
Fig. 2 for the plot spanning the full range). Each panel compares the 
average trustworthiness of domains ranked by CF and CF+D with 
two baselines. The first is the trustworthiness of websites that users 
visited in the test set, ranked by their TF-IDF-transformed number 
of visits (that is, pageviews). This baseline captures the trustworthi-
ness of the websites that users in the YouGov Pulse panel actually 
visited after adjusting for the fact that more popular websites tend 
to attract more visits in general. The second baseline is the trust-
worthiness of recommendations produced according to the over-
all popularity of domains. This baseline does not include any local 
information about user–user similarities and thus can be seen as a 
‘global’ measure of popularity with no contribution due to user per-
sonalization (Recommendation based on global popularity section).

We observe in Fig. 4 that the trustworthiness of recommenda-
tions produced by CF+D is significantly better than standard CF 
recommendations, global popularity recommendations and base-
line statistics from user behaviour. In particular, CF produces less 
trustworthy rankings than both the recommendations based on 
global popularity and those based on user visits (for small values of 
k, the difference is within the margin of error). In contrast, CF+D 
produces rankings that are more trustworthy than CF and either 
baseline (global popularity or actual visits) across different lev-
els of k. These results suggest that audience partisan diversity can 
provide a valuable signal to improve the reliability of algorithmic 
recommendations.

Of course, the above exercise would be meaningless if our pro-
posed algorithm recommended websites that do not interest users. 
Because CF+D alters the set of recommended domains to priori-
tize those visited by more diverse partisan audiences, it may be  
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suggesting sources that offer counter-attitudinal information or that 
users do not find relevant. In this sense, CF+D could represent an 
audience-based analogue of the topic diversification strategy from 
the recommender systems literature46. If so, a loss of predictive abil-
ity would be expected.

Figure 5 compares the accuracy of CF+D in predicting user visits 
to domains in the test set with that of CF. To evaluate accuracy, we 
compute both the fraction of correctly predicted domains (preci-
sion) and the root-mean-squared error (RMSE) as a function of the 
number of recommended domains k (see Accuracy metrics section 
for definitions). Note that precision improves with k (left panel) 
by definition—as k grows, we are comparing an increasingly large 
set of recommendations with a list of fixed size. Because each bin 
averages over users with at least k domains in their test set, when k 
reaches the maximum size of the recommendation list that we can 
make, the precision necessarily becomes 100%. Note that the plots 
in Fig. 5 do not reach this level (they include only bins with at least 
100 users in them) but trend upward with k (see Supplementary  
Fig. 3 for results for all values of k).

As with precision, RMSE declines with k (Fig. 5, right) since we 
focus progressively on users with longer lists and thus more training 
data. Like in the left panel, each bin in the right panel averages over 
users with at least k domains in their test set. Unlike precision, how-
ever, RMSE is more prone to producing outliers because it does not 
depend on the relative ranking of item ratings but instead on their 
magnitude. This difference is reflected in the sudden drop in the 
error bars for the RMSE at k = 27 due to the presence of a single user 
with a maximum list length of 26 domains in testing. We manu-
ally checked the data of this user and found that the training set 
included only domains visited infrequently, leading to large errors. 
Removing this outlier eliminated the observed change.

To provide intuition about the contribution of popularity in rec-
ommendations, Fig. 5 (left) also shows the precision of the naïve 
baseline obtained by ranking items by their global popularity. This 
baseline outperforms CF and CF+D but at the price of providing 
the same set of recommendations to all users (that is, the results 
are not personalized) and of providing recommendations of lower 
trustworthiness (Fig. 4). Note that the RMSE cannot be computed 
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for this baseline because this metric requires knowledge of the rat-
ing of a domain, not just of its relative ranking.

Our results are generally encouraging. In both cases, precision 
is low and RMSE is high for low values of k, but error levels start to 
stabilize around k = 10, which suggests that making correct recom-
mendations for shorter lists (that is, k < 10) is more challenging than 
for longer ones. Moreover, when we compare CF+D with CF, accu-
racy declines slightly for CF+D relative to CF, but the difference is 
not statistically significant for all but small values of k, suggesting 
that CF+D is still capable of producing relevant recommendations.

Re-ranking items by diversity has minimal effects on predictive 
accuracy, but how does it affect user satisfaction? The recommenda-
tions produced by CF+D would be useless if users did not find them 
engaging. Unfortunately, we lack data about user satisfaction in the 
YouGov panel. Our primary metric (log number of website visits) 
cannot be interpreted as a pure measure of satisfaction because other 
factors of course shape the decision by users in the YouGov panel to 
visit a website, including social media recommendations themselves.

However, it is possible that more accurate recommendations 
will result in higher user satisfaction. To quantify the significance 
of the observed drop in accuracy due to re-ranking by diversity, we 
simulated the sampling distribution of the precision of recommen-
dations obtained after re-ranking. We do so by re-shuffling domain 
labels in the ranked list produced by CF+D while maintaining the 
sequence of predicted ratings fixed. We then compute precision on 
this reshuffled list. Repeated multiple times, this procedure allows 
us to calculate the probability, due to random chance alone, of a drop 
in precision (relative to CF) as small as the observed one. Compared 
with this null model, we find that our results lead to significantly 
higher precision. Most random re-rankings of the same magnitude 
as the one produced by CF+D would result in lower precision than 
what we observe. We report the results of this additional analysis in 
Supplementary Fig. 9.

Audience diversity and misinformation exposure. The results 
above demonstrate that incorporating audience partisan diversity 
can increase the trustworthiness of recommended domains while 
still providing users with relevant recommendations. However, we 
know that exposure to unreliable news outlets varies dramatically 
across the population. For instance, exposure to untrustworthy 
content is highly concentrated amongst a narrow subset of highly 
active news consumers with heavily slanted information diets11,14. 
We therefore take advantage of the survey and behavioural data 
available on participants in the Pulse panel to consider how CF+D 
effects vary by individual partisanship (self-reported via survey), 
behavioural measures such as volume of news consumption activity 
and information diet slant, and contextual factors that are relevant 
to algorithm performance such as similarity to other users.

In this section, we again produce recommendations using either 
CF or CF+D and measure their difference in trustworthiness with 
respect to a baseline based on user visits (specifically the ranking 
by TF-IDF-normalized number of visits v; Audience diversity and 
collaborative filtering section). However, we analyse the results dif-
ferently than those reported above. Rather than considering recom-
mendations for lists of varying length k, we create recommendations 
for different subgroups based on the factors of interest and compare 
how the effects of the CF+D approach vary between those groups.

To facilitate comparisons in performance between subgroups 
that do not depend on list length k, we define a new metric to sum-
marize the overall trustworthiness of the ranked lists obtained with 
CF and CF+D over all possible values of k. Since users tend to pay 
less attention to items ranked lower in the list47, it is reasonable to 
assume that lower-ranked items ought to contribute less to the over-
all trustworthiness of a given ranking.

Let us now consider probabilistic selections from two differ-
ent rankings, represented by random variables X and X′, where X 

is the random variable of the ranking produced by one of the two 
recommendation algorithms (either CF or CF+D) and X′ is the 
selection from the baseline ranking based on user visits. Using a 
probabilistic discounting method (equation (8)), we compute the 
expected change in trustworthiness Q from switching the selection  
from X′ to X as

ΔQ = E [Q(X)]− E
[

Q(X′)
]

, (1)

where the expectations of Q(X) and Q(X′) are taken with regard 
to the respective rankings (Discounting via ranking section). A 
value of ΔQ > 0 indicates that algorithmic recommendations are 
more trustworthy than what users actually accessed. If ΔQ < 0, the 
trustworthiness of a ranked list is lower than the baseline from user 
visits. (To ensure that the results below are not affected by the dis-
counting method we employ, we report qualitatively similar results 
obtained without any discounting for a selection of values of k in 
Supplementary Figs. 10–16.)

Applying equation (1), we find that CF+D substantially increases 
trustworthiness for users who tend to visit sources that lean conser-
vative (Fig. 6a) and for those who have the most polarized informa-
tion diets (in either direction; Fig. 6c), two segments of users who 
are especially likely to be exposed to unreliable information10,11,14. 
In both cases, CF+D achieves the greatest improvement amongst 
the groups where CF reduces the trustworthiness of recommen-
dations the most, which highlights the pitfalls of algorithmic 
recommendations for vulnerable audiences and the benefits of prior-
itizing sources with diverse audiences in making recommendations  
to those users.

Note that, even though the YouGov sample includes self-reported 
information on both party identification and partisanship of 
respondents, we use only the former variable (Fig. 6b) for stratifica-
tion to avoid circularity given the definition of CF+D, which relies 
on the latter. In Fig. 6a,c, we instead stratify on an external measure 
of news diet slant (calculated from a large sample of social media 
users; Stratification analysis section).

We also observe that CF+D has strong positive effects for users 
who identify as Republicans or lean Republican (Fig. 6b) and for 
those who are the most active news consumers in terms of both 
total consumption (Fig. 6d) and number of distinct sources (Fig. 6e).  
Furthermore, since the two recommendation schemes considered 
here (CF and CF+D) are predicated on identifying similar users 
according to their tastes and behaviours, we also segment the users 
of the YouGov sample according to the degree of similarity with their 
nearest neighbours (identified based on Kendall’s rank correlation 
coefficient between user vectors; Audience diversity and collabora-
tive filtering section). Stratifying on the average of nearest-neighbour 
similarities, we find that CF+D results in improvements for the users 
whose browsing behaviour is most similar to others in their neigh-
bourhood and who might thus be most at risk of ‘echo chamber’ 
effects (Fig. 6f). Finally, when we group users by the trustworthiness 
of the domains they visit, we find that the greatest improvements 
from the CF+D algorithm occur for users who are exposed to the 
least trustworthy information (Fig. 6g). By contrast, the standard CF 
algorithm often recommends websites that are less trustworthy than 
those that respondents actually visit (ΔQ < 0).

Discussion
The findings presented here suggest that the ideological diversity 
of the audience of a news source is a reliable indicator of its jour-
nalistic quality. To obtain these findings, we combined source reli-
ability ratings compiled by expert journalists with traffic data from 
the YouGov Pulse panel. Of course, we are not the first to study 
the information diets of internet users. Prior work has leveraged 
web traffic data to pursue related topics such as identifying poten-
tial dimensions of bias of news sources16,48, designing methods to  
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present diverse political opinions49,50 and measuring the prevalence 
of filter bubbles9. Unlike these studies, however, we focus on how to 
promote exposure to trustworthy information rather than seeking 
to quantify or reduce different sources of bias.

A number of limitations must be acknowledged. First, our cur-
rent methodology, which is based on reliability ratings compiled 
at the level of individual sources, does not allow us to evaluate the 
quality of specific articles that participants saw. However, even a 
coarse signal about source quality could still be useful for ranking 
a newsfeed given that information about reliability is more widely 
available at the publisher level than the article level. Another limi-
tation is that our data lack information about actual engagement. 

Though we show that our re-ranking procedure is associated with 
a minimal loss in predictive accuracy, it remains an open question 
whether diversity-based rankings lead not just to higher exposure to 
trustworthy content but also to more engagement with it. Our analy-
sis seems to suggest a trade-off between ranking accuracy and trust-
worthiness, but the results are specific to one algorithm (user-based 
collaborative filtering). Different ranking schemes might make bet-
ter use of the diversity signal. In general, more research is needed 
to tease apart the causal link between political attitudes, readership, 
engagement and information quality.

Our work has a number of implications for the integrity of 
the online information ecosystem. First, our findings suggest that 
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Fig. 6 | Effect of CF and CF+D versus actual visits baseline on trustworthiness by user characteristics and behaviour. a, Ideological slant of visited 
domains (terciles using scores from Bakshy et al. 5). b, Self-reported party identification from YouGov Pulse responses as measured on a 7-point scale 
(1–3, Democrats including people who lean Democrat but do not identify as Democrats; 4, independents; 5–7, Republicans including people who lean 
Republican but do not identify as Republicans). c, Absolute slant of visited domains (terciles using scores from Bakshy et al. 5). d, Total online activity 
(TF-IDF-transformed pageviews; terciles). e, Distinct number of domains visited (terciles). f, Average user–user similarity with nearest n = 10 neighbours 
in training set (terciles). g, Trustworthiness of domains visited by users (in training set; terciles). Bars represent the s.e.m. of each stratum. Change in 
trustworthiness ΔQ based on scores from NewsGuard43.
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search engines and social media platforms should consider includ-
ing audience diversity into their existing set of news quality signals. 
Such a change could be especially valuable for domains for which 
we lack other quality signals such as source reliability ratings com-
piled by experts. Media ratings systems such as NewsGuard could 
also benefit from adopting our diversity metric, for example, to help 
screen and prioritize domains for manual evaluation. Likewise, 
designers of recommendation algorithms should consider measur-
ing the trustworthiness of rankings as an additional measure of per-
formance of their systems.

Critics may raise concerns that such a change in ranking criteria 
would result in unfair outcomes, for example, by reducing exposure 
to content by certain partisan groups but not others. To see whether 
ranking by diversity leads to any differential treatment for different 
partisan news sources, we compute the rate of false positives due 
to re-ranking by diversity. Here, the false positive rate is defined as 
the conditional probability that CF+D does not rank a trustwor-
thy domain amongst the top k recommendations while CF does, 
for both left- and right-leaning domains. To determine whether 
a domain is trustworthy, we rely on the classification provided 
by NewsGuard (that is, the domain has a reliability score ≥60).  
Figure 7 shows the rate of false positives as a function of k of both 
left- and right-leaning domains averaged over all users. Despite 
some small differences, especially for low values of k, we find no 
consistent evidence that this change would produce systematically 
differential treatment across partisan groups.

Another concern is the possibility of abuse. For example, an 
attacker could employ a number of automated accounts to col-
lectively engage with an ideologically diverse set of sources. This 
inauthentic, ideologically diverse audience could then be used to 
push specific content that the attacker wants to promote atop the 
rankings of a recommender system. Similarly, an attacker who 
wanted to demote a particular content could craft an inauthentic 
audience with low diversity. Fortunately, there is a vast literature on 
the topic of how to defend recommender systems against such ‘shil-
ling’ attacks51,52 and platforms already collect a wealth of signals to 
detect and remove inauthentic coordinated behaviour of this kind. 
Future work should investigate the feasibility of creating trusted 
social media audiences that are modelled on existing efforts in  

marketing research using panels of consumers. We hope that our 
result stimulates further research in this area.

Methods
This study complies with all relevant ethical regulations and was reviewed by 
the institutional review board under protocols #HUM00161944 (University of 
Michigan) and #STUDY000433 (University of South Florida).

Data. Our analysis combines two sources of data. The first is the NewsGuard  
News Website Reliability Index43, a list of web domain reliability ratings compiled 
by a team of professional journalists and news editors. The data that we licensed for 
research purposes include scores for 3,765 web domains on a 100-point scale based 
on a number of journalistic criteria such as editorial responsibility, accountability 
and financial transparency. These data were current as of 12 November 2019 
and do not reflect subsequent updates (see Data availability section for more 
information). NewsGuard categorizes web domains into four main groups: ‘green’ 
domains, which have a score of 60 or more points and are considered reliable; ‘red’ 
domains, which score less than 60 points and are considered unreliable; ‘satire’ 
domains, which should not be regarded as news sources regardless of their score; 
and ‘platform’ domains such as Facebook or YouTube that primarily host content 
generated by users. The mean reliability score for domains in the data is 69.6.  
The distribution of scores is shown in Supplementary Fig. 1.

The second data source is the YouGov Pulse panel, a sample of US-based 
internet users whose web traffic was collected in anonymized form with their  
prior consent. This traffic data were collected during seven periods between 
October 2016 and March 2019 (Supplementary Table 6). A total of 6,890 
participants provided data. Overall, this group is diverse and resembles the US 
population on key demographic and political dimensions (47.9% male, 29.0% with 
a four-year college degree, 67.9% white, median age 55 years, 37.8% identifying as 
Democrats and 26.3% identifying as Republicans; see Supplementary Table 6 for a 
full summary by sample collection period). Note that, to be eligible for the  
study, participants in the YouGov Pulse panel had to be 18+ years of age, so the 
reported dimensions should be interpreted as being conditional on this extra 
eligibility criterion.

We perform a number of pre-processing steps on this data. We combine all 
waves into a single sample. We pool web traffic for each domain that received  
30 or more unique visitors. Finally, we use the self-reported partisanship of  
the visitors (on a seven-point scale from an online survey) to estimate mean 
audience partisanship and audience partisan diversity, which we estimate using 
different measures described next. These different measures are compared in 
Supplementary Table 1.

Definition of audience partisan diversity. To measure audience partisan diversity, 
first define Nj as the count of participants who visited a web domain and reported 
their political affiliation to be equal to j for j = 1, …, 7 (where 1 indicates strong 
Democrat and 7 indicates strong Republican). The total number of participants 
who visited the domain is thus N = ∑jNj, and the fraction of participants with a 
partisanship value of j is pj = Nj/N. Denote the partisanship of the ith individual as 
si. We calculate the following metrics to measure audience partisan diversity:

Variance: σ2 = N−1 ∑ (si − s)2, where s  is average partisanship.
Shannon’s entropy: S = −

∑
p(j)log p(j), where p(j) is estimated in the 

following three different ways: (1) p(j) = pj (maximum likelihood), (2) p(j) =
Nj+α

N+7α
 

(the mean of the posterior distribution of the Dirichlet prior with α = 1) and (3) 
the Nemenman–Shafee–Bialek (NSB) method in ref. 53, which uses a mixture of 
Dirichlet priors.

Complementary maximum probability: 1 − max
j

{
pj
}

;

Complementary Gini: 1 − G, where G is the Gini coefficient of the count 
distribution 

{
Nj
}
j=1,…,7.

The above metrics all capture the idea that the partisan diversity of the 
audience of a web domain should be reflected in the distribution of its traffic across 
different partisan groups. Each weights the contribution of each individual person 
who visits the domain equally. They can thus be regarded as user-level measures 
of audience partisan diversity. However, the volume and content of web browsing 
activity are highly heterogeneous across internet users8,54, with different users 
recording different numbers of pageviews to the same website. To account for this 
imbalance, we also compute the pageview-level, weighted variants of the above 
audience partisan diversity metrics where, instead of treating all visitors equally, 
each individual visitor is weighted by the number of pageviews they made to any 
given domain.

As a robustness check, we compare the strength of association of each of these 
metrics to news reliability in Supplementary Table 1. We find that all variants 
correlate with news reliability, but the relationship is strongest for variance.

Audience diversity and collaborative filtering. In general, a recommendation 
algorithm takes a set of users U  and a set of items D and learns a function 
f : U × D → R that assigns a real value to each user–item pair (u, d) representing 

the interest of user u in item d. This value denotes the estimated rating that user u 
will give to item d. In the context of the present study, D is a set of news sources 
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identified by their web domains (for example, nytimes.com, wsj.com), so from  
now on we will refer to d ∈ D interchangeably as either a web domain or a  
generic item.

Collaborative filtering is a classic recommendation algorithm in which some 
ratings are provided as input and unknown ratings are predicted based on those 
known input ratings. In particular, the user-based CF algorithm, which we employ 
here, seeks to provide the best recommendations for users by learning from others 
with similar preferences. CF therefore requires a user–domain matrix where each 
entry is either known or needs to be predicted by the algorithm. Once the ratings 
are predicted, the algorithm creates a ranked list of domains for each user that are 
sorted in descending order by their predicted ratings.

To test the standard CF algorithm and our modified CF+D algorithm, we first 
construct a user–domain matrix V from the YouGov Pulse panel. The YouGov 
Pulse dataset does not provide user ratings of domains, so we instead count the 
number of times πu,d ∈ Z

+ a user u has visited a domain d (that is, pageviews) 
and use this variable as a proxy47. Because this quantity is known to follow a very 
skewed distribution, we compute the rating as the TF-IDF of the pageview counts:

vu,d =
πu,d∑
hπu,h

log
(

π
∑

uπu,d

)

, (2)

where π =
∑

u
∑

d πu,d is the total number of visits. Note that, if a user has never 
visited a particular domain, then vu,d = 0. Therefore, if we arrange all the ratings  
into a user–domain matrix V ∈ R

|U|×|D|, such that (V)u,d = vu,d, we will obtain 
a sparse matrix. The goal of any recommendation task is to complete the user–
domain matrix by predicting the missing ratings, which in turn allows us to 
recommend new web domains to users that may not have seen them. In this case, 
however, we lack data on completely unseen domains. To test the validity of our 
methods, we therefore follow the customary practice in machine learning of setting 
aside some data to be used purely for testing (Supervised learning evaluation 
workflow section).

Having defined V, the next step of the algorithm is to estimate the similarity 
between each pair of users. To do so, we use either the Pearson correlation 
coefficient or the Kendall rank correlation of their user vectors, that is, their 
corresponding row vectors in V (that is, with zeroes included). For example, if 
τ(·, ·) ∈ [−1, 1] denotes the Kendall rank correlation coefficient between two sets 
of observations, then the corresponding coefficient of similarity between u ∈ U  
and u′ ∈ U  can be defined as

sim(u, u′) =
τ(Vu, Vu′ ) + 1

2 , (3)

where Vu, Vu′ ∈ R
1×|U| are the row vectors of u and u′, respectively. A similar 

definition can be used for Pearson’s correlation coefficient in place of τ.
These similarity coefficients are in turn used to calculate the predicted ratings. 

In the standard user-based CF, the predicted rating of a user u for a domain d is 
calculated as

v̂CFu,d = v̄u +

∑
u′∈Nud

sim(u, u′)(vu′ ,d − v̄u′ )
∑

u′∈Nud
sim(u, u′)

, (4)

where Nud ⊆ U  is the set of the n = 10 users most similar to u who have also  
rated d (that is, the neighbours of u), vu′ ,d is the observed rating (computed with 
equation (2)) that neighbouring user u′ has given to domain d, v̄u and v̄u′ are 
the average ratings of u and u′ across all domains they visited, respectively, and 
sim(u, u′) is the similarity coefficient (computed with equation (3)) between users 
u and u′ based on either the Pearson or the Kendall correlation coefficient.

Having defined the standard CF in equation (4), we now define our variant 
CF+D, which incorporates audience partisan diversity of domain d ∈ D as a 
re-ranking signal in the following way:

v̂CF+D
u,d = v̂CFu,d + g (δd) , (5)

where g (δd) is the re-ranking term of domain d, obtained by plugging  
the audience partisan diversity δd (for example, we use the variance of the 
distribution of self-reported partisan slants of its visitors, δd = σ2

d) into a standard 
logistic function:

g(δ) =
a

1 + exp (− (δ − t) /ψ)
. (6)

In equation (6), parameters a, ψ and t generalize the upper asymptote, inverse 
growth rate and location of the standard logistic function, respectively.  
For the results reported in this study, we empirically estimate the location  
as t = δ̄, the average audience partisan diversity across all domains, which 
corresponds to the value of δ̄ = 4.25 since we measure diversity as the variance  
of the distribution of self-reported partisan slants. For the remaining parameters, 
we choose a = 1 and ψ = 1. As a robustness check, we re-ran all analyses with 
a larger value of a and obtained qualitatively similar results (available upon 
reasonable request).

Supervised learning evaluation workflow. To evaluate both recommendation 
algorithms, we follow a standard supervised learning workflow. We use precision 
and RMSE, two standard metrics used to measure the relevance and accuracy of 
predicted ratings in supervised learning settings. We define these two metrics in 
Accuracy metrics section. Here, we instead describe the workflow we followed 
to evaluate the recommendation methods. Since our approach is based on 
supervision, we need to designate some of the user ratings (that is, the number of 
visits to each domain, which are computed using equation (2)) as ground truth to 
compute performance metrics.

For each user, we randomly split the domains they visited into a training set 
(70%) and a testing set (30%). This splitting varies by user, so the same domain 
could be included in the training set of a user and in the testing set of another. 
Then, given any two users, their training set ratings are used to compute user–
user similarities using equation (3) (which is based on Kendall’s rank correlation 
coefficient; a similar formula can be defined using Pearson’s correlation). If, in 
computing user–user similarities with equation (3), a domain is present for one 
user but not the other, the latter rating is assumed to be zero regardless of whether 
the domain is present in testing or not. This assumption, which follows standard 
practice in collaborative filtering algorithm, ensures that there is no leaking of 
information between the test and training sets.

Finally, using either equation (4) or (5), we predict ratings for domains in the 
test set and compare them with the TF-IDF of the actual visit counts in the data.

Recommendation based on global popularity. We also generate ranked lists for 
users based on global domain popularity (user level) as an additional baseline 
recommendation technique. All the domains are initially assigned a rank  
(global popularity rank) according to their user-level popularity, which is 
calculated from the training set views. Then, the domains in the test set of 
each user are ranked according to their global popularity ranks to generate the 
recommendations. This method does not include any personalization as the rank 
of a domain for a particular user does not depend on other similar users but 
depends on the whole population. In particular, if two users share the same  
two domains in testing, their relative ranking is preserved, even if the two users 
visited different domains in training.

Trustworthiness metrics. In addition to standard metrics of accuracy 
(precision and RMSE; Accuracy metrics section), we define a new metric called 
‘trustworthiness’ to measure the news reliability of the recommended domains. 
It is calculated using NewsGuard scores in two ways: either using the numerical 
scores or the set of binary indicators for whether a site meets or exceeds the 
threshold score of 60 defined by NewsGuard as indicating that a site is generally 
trustworthy43. Let d1, d2, …, dk be a ranked list of domains. Using numerical scores, 
the trustworthiness is the average:

1
k

k∑

r=1
Q(dr), (7)

where Q(d) ∈ [0, 100] denotes the NewsGuard reliability score of d ∈ D.
If instead we use the binary indicator of trustworthiness provided by 

NewsGuard, then the trustworthiness of domains in a list is defined as the 
fraction of domains that meet or exceed the threshold score. Note that, unlike 
precision and RMSE, the trustworthiness of a list of recommendations does not 
use information on the actual ratings vu,d. Instead, using equation (7), we compute 
the trustworthiness of the domains in the test set ranked in decreasing order of 
user visits vu,d. We then compare the trustworthiness of the rankings obtained with 
either CF or CF+D against the trustworthiness of this baseline.

Accuracy metrics. Given a user u, let us consider a set D of web domains for 
which |D| = D. For each domain d ∈ D, we have three pieces of information: the 
two predicted ratings v̂CFu,d and v̂CF+D

u,d  produced by CF and CF+D and the actual 
rating vu,d (defined in Audience diversity and collaborative filtering section). In the 
following, we omit the subscript u of the user, which is fixed throughout, and the 
CF/CF+D superscript unless it is not obvious from context.

Let us consider a given recommendation method (CF or CF+D) and  
denote by r(d) (respectively, r′(d)) the rank of d when the domains are sorted  
by decreasing order of recommendation and actual ratings, respectively.  
Given a recommendation list length 0 < k ≤ D, let us define the set of  
predicted domains as

Pk = {d ∈ D : r(d) ≤ k}

and the set of actual domains as

Ak = {d ∈ D : r′(d) ≤ k}.

Then the precision for a given value of k is given by the fraction of correctly 
predicted domains:

Precision =
|Pk ∩ Ak|

|Pk|
.
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Similarly, the RMSE for a given value of k between the two ranked lists of ratings  
is computed as

RMSE =

√
√
√
√ 1

k

k∑

r=1

(
v̂ρ(r) − vρ′(r)

)2,

where ρ : [D] �→ D (respectively ρ′) is the inverse function of r(⋅) (respectively, 
r′(·)), that is, the function that maps ranks back to their domain by the 
recommendation method (respectively, by actual visits). Note that, in the 
summation, ρ(r) and ρ′(r) do not generally refer to the same web domain: the 
averaging is over the two ranked lists of ratings, not over the set of domains in 
common between the two lists.

Discounting via ranking. To measure the effect of CF+D on the trustworthiness 
of rankings, we must select a particular list length k. Although Fig. 4 shows 
improvements for all values of k, one potential problem when stratifying on 
different groups of users is that the results could depend on the particular choice 
of k. To avoid dependence on k, we consider a probabilistic model of a hypothetical 
user visiting web domains from a ranked list of recommendations and define 
overall trustworthiness as the expected value of the trustworthiness of domains 
selected from that list (that is, discounted by probability of selection).

Let us consider a universe of domains D as the set of items to rank. Inspired 
by prior approaches on stochastic processes based on ranking55, we consider a 
discounting method that posits that the probability of selecting domain d ∈ D 
from a given ranked recommendation list decays as a power law of its rank  
in the list:

Pr {X = d} =
r−α

d∑
hr

−α

h
(8)

where X ∈ D is a random variable denoting the probabilistic outcome of the 
selection from the ranked list, rd ∈ N is the rank of a generic d ∈ D and α ≥ 0 is 
the exponent of power-law decay (when α = 0, all domains are equally likely; when 
α > 0, top-ranked domains are more likely to be selected).

This procedure allows us to compute, for any given user, the effect of a 
recommendation method (CF or CF+D) simply as the difference between its 
expected trustworthiness and the trustworthiness of the ranking obtained  
by sorting the domains visited by the user in decreasing order of pageviews 
(equation (1)).

In practice, to compute equation (1), let d1, d2, …, dk and d′1, d′2, …, d′k be two 
ranked lists of domains, dr, d′r ∈ D ∀r = 1, …, k, generated by a recommendation 
algorithm and by actual user pageviews, respectively, and let us denote by Q(d) the 
NewsGuard reliability score of d ∈ D (Trustworthiness metrics section). Recall 
that equation (8) specifies the probability of selecting a given domain d ∈ D from 
a particular ranked list as a function of its rank. Even though any pair of equally 
ranked domains will be different across these two lists (that is, dr ̸= d′r in general), 
their probability will be the same because equation (8) only depends on r. We can 
thus calculate the expected improvement in trustworthiness as

ΔQ =

k∑

r=1
P(r)

(
Q (dr) − Q

(
d′r
))

, (9)

where P(r) is the probability of selecting a domain with rank r from equation (8), 
which we computed setting α = 1.

Stratification analysis. Recall that we use the self-reported partisanship of 
respondents in the YouGov Pulse panel as the basis for our diversity signal 
(Definition of audience partisan diversity section). To avoid the circular reasoning 
in stratifying on the same source of data, Fig. 6a,c groups these users according to 
the slant of their actual news consumption, which may not necessarily reflect their 
self-reported partisanship (for example, a self-reported Democrat might access 
mostly conservative-leaning websites). We determined this latter metric using an 
external classification originally proposed by Bakshy et al.5, who estimated the slant 
of 500 web domains focused on hard news topics. In practice, Bakshy et al.5 based 
their classification on how hard news from those domains was shared on Facebook 
by users who self-identified as liberal or conservative in their profile. For almost 
all domains, Bakshy et al.5 reported a value s ∈ [−1, 1] with a value of s = +1 for 
domains that are shared almost exclusively by conservatives and a value of s = −1 
for those shared almost exclusively by liberals. (These values could technically 
vary over [−2, 2] but only 1% of domains fell outside [−1, 1] when using the 
measurement approach described by Bakshy et al.5.)

In Fig. 6c, respondents are grouped according to the absolute slant |s| of the 
visited domains, where a value of |s| = 0 denotes domains with a perfectly centrist 
slant and a value of |s| = 1 indicates domains with extreme liberal or conservative 
slants (that is, they are almost exclusively shared by one group and not the other).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
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restrictions apply to the availability of these data, which were used under licence 
for the current study and thus cannot be made publicly available. However, data 
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Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), where 
they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new dates are 
provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals were 
caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if released, 
say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or guidance 
was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics See above.

Recruitment Participants were recruited among respondents of the YouGov Pulse panel, a representative sample of U.S.-based Internet 
users. Informed consent to participate in the study was obtained prior to data collection.

Ethics oversight This study was reviewed by the IRB under protocols #HUM00161944 (University of Michigan) and #STUDY000433 (University 
of South Florida).

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Clinical data
Policy information about clinical studies
All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.
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Dual use research of concern
Policy information about dual use research of concern

Hazards
Could the accidental, deliberate or reckless misuse of agents or technologies generated in the work, or the application of information presented 
in the manuscript, pose a threat to:

No Yes
Public health

National security

Crops and/or livestock

Ecosystems

Any other significant area

Experiments of concern
Does the work involve any of these experiments of concern:

No Yes
Demonstrate how to render a vaccine ineffective

Confer resistance to therapeutically useful antibiotics or antiviral agents

Enhance the virulence of a pathogen or render a nonpathogen virulent

Increase transmissibility of a pathogen

Alter the host range of a pathogen

Enable evasion of diagnostic/detection modalities

Enable the weaponization of a biological agent or toxin

Any other potentially harmful combination of experiments and agents

ChIP-seq

Data deposition
Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.

Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of reads and 
whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone name, and lot 
number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and index files 
used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a community 
repository, provide accession details.
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Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the 
samples and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging

Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).

Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types used for 
transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).
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Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first and 
second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial correlation, 
mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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